Performance enhancement of a bottom-hinged oscillating wave surge converter via resonant adjustment
Yao Liu,
Norimi Mizutani,
Yong-Hwan Cho and
Tomoaki Nakamura
Renewable Energy, 2022, vol. 201, issue P1, 624-635
Abstract:
Based on the boundary element method, the frequency-domain dynamic equations of bottom-hinged oscillating wave surge converters under regular and irregular waves in shallow waters were derived. The nonlinear hydrostatic restoring moment and drag moment were linearized as time-independent stiffness and constant damping, respectively. A Python code was developed to efficiently solve the response without significantly sacrificing accuracy. The feasibility of performance enhancement via adjusting Power Take-Off (PTO) parameters was discussed. Under regular waves, the adjusting approaches are classified as no artificial resonance, ideal resonance, and near resonance. The adjustment towards resonance can boost the capturing power, although the flap-type absorber was recognized as a wave torque dominating device. A near-resonance situation, found by scanning the PTO parameters, is more effective to improve the hydrodynamic performance than the ideal resonance, where the amplification of the damping item is disadvantageous. An increasing hysteretic phase angle of velocity relative to wave torque with the increase of wave period represents the best status of wave energy harvesting. Under irregular waves, two adjusting approaches are presented: no artificial resonance and adjusting towards resonance. The performance at short peak periods can be improved by adjusting PTO stiffness, while, adjusting PTO inertia torque is almost ineffective.
Keywords: Performance enhancement; Resonance; Oscillating wave surge converter; PTO system; Hydrodynamics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122016329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:201:y:2022:i:p1:p:624-635
DOI: 10.1016/j.renene.2022.10.130
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().