EconPapers    
Economics at your fingertips  
 

Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage

Guido Francesco Frate, Andrea Baccioli, Leonardo Bernardini and Lorenzo Ferrari

Renewable Energy, 2022, vol. 201, issue P1, 636-650

Abstract: Long-duration storage (i.e., 6 + h) could foster the power sector transitions towards renewable energy sources. Pumped thermal energy Storage (PTES) recently gained much attention. Thermally-Integrated PTES (TI-PTES) exploiting additional thermal energy sources to boost electric roundtrip efficiency are promising and can exploit low-temperature heat sources, including solar thermal energy. Since the solar resource availability substantially varies along the year, assessing the yearly system performance is mandatory to estimate the solar TI-PTES practical potential. The paper studies a solar TI-PTES plant based on low-concentration Solar Thermal Collectors (STC), a High-Temperature Heat Pump (HTHP), and an Organic Rankine Cycle (ORC). In the paper, the HTHP and ORC off-design performance are mapped for a set of representative conditions through an off-design model. Such maps are used to simulate the system operation when coupled with a solar thermal energy production profile for some periods considered representative of the whole year. Results show that the average round trip efficiency is always between 0.85 and 0.87, and the system can operate in various conditions, even in the cold seasons. While the system performance is almost constant over the year, the operating charging and discharging hours and the stored energy are more than doubled from January to July.

Keywords: Carnot battery; Thermally-integrated pumped-thermal energy storage; High-temperature heat pump; Organic rankine cycle; Off-design (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122015993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:201:y:2022:i:p1:p:636-650

DOI: 10.1016/j.renene.2022.10.097

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:636-650