EconPapers    
Economics at your fingertips  
 

Numerical analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global warming under ambient crosswind

Hanbing Xiong, Tingzhen Ming, Yongjia Wu, Caixia Wang, Qiong Chen, Wei Li, Liwen Mu, Renaud de Richter and Yanping Yuan

Renewable Energy, 2022, vol. 201, issue P1, 678-690

Abstract: Methane's global warming potential (GWP) is much larger than carbon dioxide and contributes significantly to global warming. Solar chimney power plant (SCPP) integrated with photocatalytic reactors can capture and remove atmospheric methane, and generate electrical power without fossil energy consumption simultaneously. In this paper, the performance of the flow characteristics, the CH4 removal, the CO2 emission reduction, and the power generation were analyzed for the SCPP integrated with different types of photocatalytic reactors under ambient crosswind (ACW). The results revealed that the SCPP integrated with a honeycomb reactor was more stable for the degradation of CH4 than that with a plate reactor. With an increase in ACW, the removal rate of atmospheric CH4 was reduced to a constant value of 0.41 g/s for the honeycomb reactor and 0.11 g/s for the plate reactor. The SCPP integrated with a honeycomb reactor achieved a maximum power generation of 88.31 kW, which was 1.63 times than that of the conventional SCPP when G = 857 W/m2 and ACW = 0 m/s. In addition, the improved SCPP could reduce CO2 emissions by 85.04 kg/h when G = 857 W/m2, ACW = 0 m/s, and △P = 320 Pa.

Keywords: Solar chimney; Ambient crosswind; Atmospheric CH4 removal; Photocatalytic reactors; CO2 emission reduction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122016573
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:201:y:2022:i:p1:p:678-690

DOI: 10.1016/j.renene.2022.11.024

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:678-690