Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas
A.R.C. Labanca,
A.G. Cunha,
R.P. Ribeiro,
C.G. Zucolotto,
M.B. Cevolani and
M.A. Schettino
Renewable Energy, 2022, vol. 201, issue P2, 11-21
Abstract:
The biggest challenge facing the energy sector today is how to achieve a faster transition from fossil fuel economy to sustainable energy sources. Hydrogen is a clean chemical element that can be associated to high-efficiency fuel cells. However, most industrial H2 production processes are obtained from thermochemical processes that generate large amounts of CO2, such as natural gas (NG) steam reforming and coal gasification. An option to CO2-free H2 production is by water electrolysis based on renewable electricity, however it has technical-economic limitations that make its wide use difficult. This article presents a new plasma reformer as an alternative for H2 production that uses NG with CO2 or biogas as feedstock. Conversions of 90% of NG were experimentally obtained, producing H2, CO and reduced graphene oxide in a single pass through the reactor, without catalysts or heat regeneration. The Energy Conversion Efficiency of the prototype presented values close to 50%, without regard the energy of the carbonaceous nanomaterials obtained and depending on the losses between the power supply and the plasma torch. The proposed technology contributes to the transition from fossil fuel to renewable sources, suggesting the production of H2 in a decentralized way for fuel cell electric vehicles.
Keywords: Plasma dry reforming; Hydrogen; Carbon dioxide; Methane; Natural gas; Biogas; Reduced graphene oxide; Hydrogen refueling station (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122016536
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:201:y:2022:i:p2:p:11-21
DOI: 10.1016/j.renene.2022.11.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().