EconPapers    
Economics at your fingertips  
 

Strategic N/P self-doped biomass-derived hierarchical porous carbon for regulating the supercapacitive performances

Weibo Huang, Diab Khalafallah, Chong Ouyang, Mingjia Zhi and Zhanglian Hong

Renewable Energy, 2023, vol. 202, issue C, 1259-1272

Abstract: Biomass-derived porous carbons have received an extensive importance as effective electrode materials owing to their abundance and low cost. The unique porous architectures and large specific surface areas of biomass are beneficial for manipulating the charge storage performance of assembled supercapacitor devices. Here, we demonstrate nitrogen and phosphorus self-doped hierarchical porous carbon (N/P-HPC) derived from yeast (Y) and phytic acid (PA) precursors via freeze-drying-assisted esterification reaction and pyrolysis treatment. The supercapacitive performance and charge storage capability of N/P-HPC were regulated by optimizing the Y/PA composition and controlling the carbonization temperature. Accordingly, the resultant N/P-HPC-Y:PA(2:1)-800 (fabricated with an optimized Y:PA ratio of 2:1 and carbonized at 800 °C) reveals a high specific surface area of 978 m2 g−1 and a large pore volume of 0.592 cm3 g−1. As an electrode material, N/P-HPC-Y:PA(2:1)-800 delivers a high specific capacitance of 432 F g−1 at a current density of 1 A g−1 and can sufficiently retain about 250 F g−1 at 20 A g−1 under a three-electrode cell configuration in 1.0 M H2SO4 electrolyte. Moreover, the as assembled symmetric supercapacitor device operated with the N/P-HPC-Y:PA(2:1)-800 as both positive and negative electrode material exhibits an energy density of 13.6 Wh kg−1 at a power density of 500 W kg−1. Even at a larger current density of 20 A g−1, the device maintains an energy density of 10.4 Wh kg−1 and a maximum power density of 10 kW kg−1. The constructed device displays a large capacitance retention of 93.3% after 10 000 charge/discharge times at a higher current density of 10 A g−1, manifesting the enhanced cycling stability.

Keywords: Biomass-derived hierarchical porous carbon; Yeast; Phytic acid; Strategic in-situ doped heteroatoms; Supercapacitor electrodes; Specific capacitance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122018171
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:202:y:2023:i:c:p:1259-1272

DOI: 10.1016/j.renene.2022.12.032

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:1259-1272