The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines
Tianming Xie,
Qifa Xu,
Cuixia Jiang,
Shixiang Lu and
Xiangxiang Wang
Renewable Energy, 2023, vol. 202, issue C, 143-153
Abstract:
In fault diagnosis, deep learning plays an important role, but still lacks good interpretability. To address this issue, we develop a novel fault frequency priors fusion deep learning (FFP-DL) framework by introducing fault frequency priors into deep learning. The FFP-DL framework contains two branches: fault frequency priors learning branch (FFPLB) and self-learning branch (SLB). We then propose a pre-training algorithm which can shorten the overall training time especially for training multiple models simultaneously. To illustrate its efficacy, we take convolutional neural network (CNN) as the specific deep learning model in the FFP-DL framework (FFP-CNN), and apply the FFP-CNN model to a private offshore wind turbines (OWTs) data. The experimental results show that the FFP fusion does help improve the performance of fault diagnosis in terms of accuracy and Marco-F1-score and provide good interpretability to the diagnosis results with the distinguished feature of predicted FFP. With the training data reduction, the performance of the FFP-CNN model does not deteriorate quickly, which implies that this framework is also suitable for less data. In addition, the result reveals the fact that the pre-training algorithm does reduce convergence epochs, which will help the FFP-CNN model train faster during the training process.
Keywords: Fault diagnosis; Fault frequency; Priors fusion; Deep learning; FFP-DL; Offshore wind turbines (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122017049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:202:y:2023:i:c:p:143-153
DOI: 10.1016/j.renene.2022.11.064
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().