EconPapers    
Economics at your fingertips  
 

Runaway characteristics of a prototype bulb turbine considering upper and lower reservoirs based on lattice Boltzmann method

Jianjun Feng, Zhenguo Ge, Guojun Zhu, Diyang Tian, Guangkuan Wu and Xingqi Luo

Renewable Energy, 2023, vol. 202, issue C, 773-783

Abstract: As a hydraulic machinery commonly applied for developing tidal energy, a bulb turbine is inevitable to experience the runaway process during operation. The performance parameters and internal flow of a bulb turbine evolves sharply during the runaway process, seriously affecting the stability of the unit. The runaway process in a bulb turbine is more sensitive to the gravity and the free level of upper and lower reservoirs due to the low working head. In this work, the runaway process in a prototype bulb turbine with upper and lower reservoirs is investigated by using the lattice Boltzmann method, which can avoid the problem of difficult grid reconstruction. Experiments are conducted to obtain the unit runaway speed of the bulb turbine. Results show that the unit runaway speed predicted by numerical simulation agrees well with that measured by experiments. The runaway characteristics of the bulb turbine with and without reservoirs are compared. During the runaway process, the variation of parameters of the bulb turbine mainly undergoes two stages, severe and stably periodic fluctuation period. The evolution of flow behaviour with time is analysed in detail, which can improve the understanding of flow characteristics in the bulb turbine during the runaway process.

Keywords: Bulb turbine; Lattice Boltzmann method; Runaway process; Reservoir; Performance prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122017797
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:202:y:2023:i:c:p:773-783

DOI: 10.1016/j.renene.2022.11.121

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:773-783