EconPapers    
Economics at your fingertips  
 

Effect of aging temperature on thermal stability of lithium-ion batteries: Part A – High-temperature aging

Tianfeng Gao, Jinlong Bai, Dongxu Ouyang, Zhirong Wang, Wei Bai, Ning Mao and Yu Zhu

Renewable Energy, 2023, vol. 203, issue C, 592-600

Abstract: Aging and thermal runaway are two significant reasons why lithium-ion batteries are struggling to become more widely available. Aging at different temperatures causes differences in the aging mechanism and thermal runaway behaviour of lithium-ion batteries. In this paper, four sets of commercial lithium-ion batteries are aged at 25 °C, 40 °C, 60 °C and 80 °C respectively for 100 cycles. Then the morphology and composition of the electrodes and separators are analysed in order to reveal the mechanism of changes in electrical performance and thermal stability due to aging at different temperatures. The differences in the decomposition products of the solid electrolyte intermediate (SEI) layer are an important factor in inducing changes in thermal runaway behaviour. At 60 °C, the accumulation of SEI decomposition products results in thicker SEI layers and shorter thermal runaway times. At 80 °C, the SEI decomposition products are heavily transformed into particles with a loose structure, generating a large amount of gas in the process, which further leads to the rupture of the aluminium-plastic film and the evaporation of the electrolyte, with a longer duration of thermal runaway and a lower maximum temperature.

Keywords: Lithium-ion battery; Thermal runaway; High-temperature aging; SEI layer; Activation energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122018882
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:203:y:2023:i:c:p:592-600

DOI: 10.1016/j.renene.2022.12.092

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:592-600