EconPapers    
Economics at your fingertips  
 

Thermohydraulic management coupled with flow pattern distinction for concentrating solar direct-steam-generation technology

Yongqing Wang, Zhenning Guo, Lu Li, Fan Gao, Ke Wang and Bo An

Renewable Energy, 2023, vol. 204, issue C, 114-130

Abstract: Concentrating solar direct-steam-generation (DSG) technology is favored for tying solar energy and water to directly power the energy loop, which is positive in achieving a zero-carbon future. Whereas, the external intermittence of the meteorological irradiation and internal instability of flow boiling pose challenges to the thermohydraulic operation and management. Herein, a light-heat-flow-pattern transient coupled analysis model of parabolic trough collector direct-steam-generation (PTC-DSG) loop was established to figure out the action among the irradiance, thermohydraulic and two-phase flow pattern. The transient flow patterns along the loop were investigated under different irradiance (I), mass flowrate (min) and inlet temperature (tin) of the loop. The results showed that increasing I and tin temporarily reduces the probability of stratified flow and increasing tin permanently reduces the probability of stratified flow. In all cases, the proportion of intermittent flow to evaporation stage remains almost unchanged (about 11%.), and the heat transfer in superheating stage still needs a long time (253s ∼ 3646s) to recover after the flow stages distribution is stable. More importantly, a quantified management strategy for irradiance -thermohydraulic-flow pattern is built. To achieve a favorable operating state, the inlet mass flow rate min should be lower than the superheated line ((1.25·I – 6.25)✕10−3 kg s−1) to obtain the superheated steam, and higher than 0.35 kg s−1 to get out of the stratified flow in evaporation stage. When the irradiation is lower than 285 W m−2 for a long time, the start-up and operation is not recommended.

Keywords: Concentrating solar power; Direct steam generation; Parabolic trough collector; Two phase flow (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122019097
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:204:y:2023:i:c:p:114-130

DOI: 10.1016/j.renene.2022.12.113

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:114-130