EconPapers    
Economics at your fingertips  
 

Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production

Josiane Pinheiro Farias, Benedict C. Okeke, Fernanda Dias De Ávila, Carolina Faccio Demarco, Márcio Santos Silva, Flávio Anastácio de Oliveira Camargo, Fátima Menezes Bento, Simone Pieniz and Robson Andreazza

Renewable Energy, 2023, vol. 205, issue C, 174-184

Abstract: Sugarcane bagasse is a lignocellulosic biomass waste produced from sugar and alcohol production. The aim of this study was to produce cellular lipids from sugarcane bagasse with a biotechnology process using microbial enzymes and lipid-accumulating yeast. Sugarcane bagasse, pre-treated with a steam explosion method, was subjected to enzymatic hydrolysis by a separate hydrolysis and fermentation (SHF) system, using crude enzymes from a new strain of Trichoderma SG2 (T. SG2) with or without supplementation with a commercial enzyme (Cellic CTec2). The mixture of both enzymes produced substantial amounts of sugar from pretreated sugarcane bagasse. In a multistage SHF process, in the second stage (21 + 21 h), a total of 26.92 g L−1 of sugar was converted. In another stage-wise process (21 + 21+21 h) of hydrolysis of residual biomass, 26.23 g L−1 of sugar was recorded; thus maximizing the production of fermentable sugars from bagasse. The cultivation of Rhodotorula sp. R1 in sugarcane bagasse enzymatic hydrolysate (BH) for lipid production was evaluated. The enrichment of the hydrolysate with d-glucose, Y-yeast extract, and P-peptone (BH + P20D20/N0.93) and (BH + Y10D20/N0.2) produced 7.69% and 10.50% of lipids, respectively. Similar to vegetable oils and other yeasts, the lipids accumulated by Rhodotorula R1 contain mainly elaidic acid, palmitic acid, stearic acid, linoleic acid, and a lower percentage of other fatty acids, indicating a suitable composition for biodiesel production.

Keywords: Sugarcane bagasse; In-house enzyme production; Trichoderma SG2; Biomass-hydrolyzing enzymes; Three-stage biomass-hydrolysis process; Oleaginous yeasts (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123000721
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:205:y:2023:i:c:p:174-184

DOI: 10.1016/j.renene.2023.01.063

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:174-184