EconPapers    
Economics at your fingertips  
 

A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines

Jon Urmeneta, Juan Izquierdo and Urko Leturiondo

Renewable Energy, 2023, vol. 205, issue C, 281-292

Abstract: In the growing wind energy sector, as in other high investment sectors, the need to make assets profitable has put the spotlight on maintenance. Efficient solutions which leverage from condition or performance based maintenance policies have been proposed during the last decades, but the proposed methods generally focus on individual components or stand for specific application areas. This paper aims to contribute to the development of performance based maintenance strategies within the wind energy sector by providing a condition monitoring based generic methodology for wind turbine performance assessment at system level. The proposed methodology is based on the detection of critical periods in which low performance is detected repeatedly. Multiple machine learning methods and models are applied to assess the wind turbine performance. This methodology has been applied in a case study with SCADA data of eight wind turbines. An analyst could benefit from the implementation of the methodology and the easy-to-interpret results shown in the proposed control chart, especially in cases in which there is less know-how about which variables have higher impact on systems performance.

Keywords: Performance; Maintenance management; Wind energy; Anomaly detection; Machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123000423
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:205:y:2023:i:c:p:281-292

DOI: 10.1016/j.renene.2023.01.035

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:281-292