Effect of seepage condition in geological stratification on thermal response test analysis of borehole heat exchanger
Changxing Zhang,
Xizheng Lu,
Yufeng Liu,
Jiahui Lu and
Shicai Sun
Renewable Energy, 2023, vol. 205, issue C, 813-822
Abstract:
Determination of ground thermal properties is the prerequisites for the design of ground-coupled heat pump systems (GCHPs), and it is crucial for evaluating the thermal performance of borehole heat exchangers (BHEs). These parameters are usually obtained by in-situ thermal response test (TRT) based on infinite line source model (ILSM). Though the effect of the groundwater flow on the estimation of ground thermal parameters is considered in homogenous ILSM, the estimated deviation can be enlarged as seepage condition varies based on the BHE model in practical geological stratification. Based on the developed numerical layered seepage BHE model (NLSBM), this paper evaluates the effects of seepage location and seepage velocity on estimated accuracy of borehole thermal resistance and ground thermal conductivity. Relative error (RE) between effective thermal conductivity λeff and the thickness-weighted thermal conductivity λTW will be up to 30.5% with the increase of the thickness of the seepage layer. The relative error between λeff and λTW increases from 5.3% to 93.5% when seepage velocity changes from 1 × 10−6 m/s to 1 × 10−4 m/s. The minimum RE between borehole thermal resistance Rb,NLSBM and effective borehole thermal resistance Rb,eff is still up to 37% when seepage locates in the 5th layer. With the increase of the seepage velocity, the RE between Rb,eff and Rb,NLSBM is enlarged, and the minimum RE is up to 29.4% corresponding to the lowest seepage velocity of 1 × 10−4 m/s. The change of seepage velocity or seepage location has little effect on Rb,NLSBM, and the highest RE is only 0.2%.
Keywords: Thermal response test; Seepage velocity; Seepage location; Borehole heat exchanger; Geological stratification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123001180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:205:y:2023:i:c:p:813-822
DOI: 10.1016/j.renene.2023.01.103
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().