EconPapers    
Economics at your fingertips  
 

Establishment of synergetic semiconductor (CdS)-to-heteroatom (C) electron transfer mechanism for alkaline water-to-hydrogen conversion

Wei Li, Yan-yan Dang, Xiao-li Hao, Fei Wang, Xiao-yun Liu and Chen-hui Zhao

Renewable Energy, 2023, vol. 206, issue C, 1180-1187

Abstract: Solar-to-hydrogen (STH) conversion can synchronously implement the utilization of renewable energy and production of clean value-added fuel. However, the existing challenges for actual application of light-driven hydrogen production are the limited STH conversion efficiency, complex catalyst structure and high cost. Herein, the glucose here served as the precursor of carbon (C)-heteroatom was doped into the cadmium sulfide (CdS) body structure to promote its carriers separation and establish the interaction between C-heteroatoms and CdS via a one-step hydrothermal method. The semiconductor-to-heteroatom electron transfer significantly accelerated the migration of photoinduced electrons to catalyst surface, resulting highly increased light-to-hydrogen conversion efficiency. Up to 5.7 times HER rate of bare CdS was achieved by the optimized C0.2-CdS nanocatalyst in alkaline condition (pH = 14) at the absence of Pt cocatalyst, and about 21.78% of apparent quantum efficiency (AQE) was reached at 500 nm of light irradiation, which remarkably outperformed the performances reported in literatures. More importantly, the C-heteroatom doping significantly enhanced the photocatalytic stability of CdS. The first-principle calculations revealed that C-heteroatom doping dramatically reduced the activation energy (Ea) of H2O-to-H* conversion and barrier of H*-to-H2 conversion on CdS, which provided the theoretical evidence for the improved HER photoactivity. This study proposes a simple and eco-friendly procedure to improve the performance of CdS photocatalyst in an inexpensive mode.

Keywords: Solar-to-hydrogen conversion; Cadmium sulfide; Apparent quantum efficiency; First-principles; Water splitting (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812300280X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:206:y:2023:i:c:p:1180-1187

DOI: 10.1016/j.renene.2023.02.128

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1180-1187