Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil
Yujiao Zhang,
Shengli Niu,
Yanan Hao,
Sitong Liu,
Jisen Liu,
Kuihua Han,
Yongzheng Wang and
Chunmei Lu
Renewable Energy, 2023, vol. 207, issue C, 116-127
Abstract:
The strontium oxide (SrO) is considered as an efficient heterogeneous catalyst for biodiesel production. However, the resistance of SrO to high free fatty acids (FFAs) in low-quality raw materials is a great challenge. In this study, the SrZrAl multiple oxide catalysts are prepared and applied in transesterification of the acidified palm oi. The preparation of the SrZrAl catalysts is optimized from the aspects of the preparation method and zirconium content, where the co-precipitation method with Sr, Zr and Al molar ratio of 6:6:1.5 is preferentially determined. The microstructure and surface chemical properties of SrZrAl catalyst are thoroughly characterized by XRD, CO2/NH3-TPD, XPS and SEM-EDS. The GA-PSO-BP algorithm is used to optimize the transesterification parameters, where the FAME yield of 94.4% could be achieved with the addition of oleic acid of 5 wt% under the condition of the methanol to oil molar ratio of 16:1 and catalyst amount of 3.8 wt% at 171 °C in 2.6 h. Excellent reusability of the SrZrAl catalyst is demonstrated by the fact that the FAME yield of 80.3% is still obtained at the fifth reuse cycle. In addition, the FAME yield reaches 83.4% even at a high oleic acid addition of 15 wt%.
Keywords: Heterogeneous; Bifunctional oxide; Free fatty acids; Strontium oxide; Zirconia; Alumina (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123002823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:207:y:2023:i:c:p:116-127
DOI: 10.1016/j.renene.2023.02.131
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().