Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards
Yu Shi,
Qiliang Cui,
Xianzhi Song,
Shaomin Liu,
Zijiang Yang,
Junlan Peng,
Lizhi Wang and
Yanchun Guo
Renewable Energy, 2023, vol. 207, issue C, 447-460
Abstract:
The aquifer thermal energy storage (ATES) system is an efficient method to overcome the gap between energy supply and demand over time and space. Heat storage and preservation abilities are key issues of a successful ATES project. However, most of previous studies only focus on heat storage and recovery abilities of the ATES, while the heat preservation ability of aquitards is neglected. Besides, effects of key factors on heat losses into aquitards still remain unclear, which makes appropriately selecting reservoirs for the heat storage challenging. Thus, the heat loss efficiency is defined to represent the heat preservation ability of aquitards, through which ATES thermal performances are comprehensively evaluated. Effects of key factors on thermal performances are analyzed and optimal reservoirs for the heat storage are recommended. Results indicated that key factors had different impacts on heat losses and thermal recovery. The conduction was the major loss mode and was sensitively affected by aquitard parameters. An aquifer with a lower thermal conductivity, a higher porosity and a superior heat capacity was more suitable for the heat storage. The aquitard with lower porosity, thermal conductivity and heat capacity was better. On the premise of sealing, increasing the aquitard permeability was conducive.
Keywords: Geothermal energy; Aquifer thermal energy storage; Thermal performance; Heat preservation ability; Heat loss efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003373
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:207:y:2023:i:c:p:447-460
DOI: 10.1016/j.renene.2023.03.044
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().