Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method
Pollyana R. Carvalho,
Samuel L.S. Medeiros,
Raul L. Paixão,
Igor M. Figueredo,
Adriano L.A. Mattos and
M. Alexsandra S. Rios
Renewable Energy, 2023, vol. 207, issue C, 703-713
Abstract:
Thermogravimetric pyrolysis of carnauba straw and carnauba stalk was studied for the first time. The experiments were carried out at four different heating rates (5–20 °C min−1) and the kinetic parameters were calculated using three isoconversional methods such as Friedman (differential), KAS (integral), and OFW (integral). The activation energies and R2 were calculated for the conversions between 0.10 and 0.90. The average activation energies were found to be 225.28 (±26.83 kJ mol−1) for carnauba straw and 218.13 (±28.06 kJ mol−1) for carnauba stalk by the Friedman method; 223.17 (±17.72 kJ mol−1) for carnauba straw and 211.04 (±18.82 kJ mol−1) for carnauba stalk by KAS method; and 212.71 (±23.19 kJ mol−1) for carnauba straw and 217.94 (±17.85 kJ mol−1) for carnauba stalk by OFW method. The FTIR spectra showed bands characteristic of hemicellulose, cellulose, and lignin at 3331 cm−1 (O–H) and 3345 cm−1 (O–H); 2919 cm−1 (C–H) and 2928 cm−1 (C–H); and 1733 cm−1 (CO) and1723 cm−1 (CO). The carnauba straw presented molar ratios of 1.43 (H/C) and 0.78 (O/C), and the carnauba stalk of 1.39 (H/C) and 0.81 (O/C). The kinetic parameters, FTIR spectra, and molar ratios are in good agreement with other reported biomasses.
Keywords: Carnauba straw; Carnauba stalk; Isoconversional model; Pyrolysis kinetics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:207:y:2023:i:c:p:703-713
DOI: 10.1016/j.renene.2023.03.073
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().