A dual stable MOF constructed through ligand exchange for enzyme immobilization with improved performance in biodiesel production
Zhiqiang Zou,
Hao Zhou,
Lingmei Dai,
Dehua Liu and
Wei Du
Renewable Energy, 2023, vol. 208, issue C, 17-25
Abstract:
The poor stability of metal-organic frameworks (MOFs) limits their practical applications in many fields. Zeolitic imidazolate frameworks (ZIF-8) has been widely studied as an enzyme immobilization carrier. In this paper, the stability of ZIF-8-immobilized lipase in methanolysis for biodiesel production was studied. Fatty acids as conventional substances involved in lipase-mediated natural acylation were found to destroy the structure of ZIF-8 through ligand exchange mechanism. A new MOF was successfully constructed by using phthalic acid (pKa much smaller than 2-methylimidazole) as the exchange ligand. This novel MOF (abbreviated as LeZIF-8-PAX, X represents reaction hours) had dual stability in water and even in pure oleic acid. Lipase immobilized on LeZIF-8-PA0.5 showed higher specific activity. FTIR analysis showed that enzyme molecule immobilized on Le-ZIF-8-PA0.5 had higher conformational flexibility than that with ZIF-8 as the carrier. When applied to methanolysis for biodiesel production, ET 2.0/LeZIF-8-PA0.5 maintained intact morphology while ET 2.0/ZIF-8 almost lost its original morphology, with enzyme activity of 81.5% and 60.2% retained respectively after 5 batch reactions. This work is anticipated to provide new ideas for constructing stable MOFs and promoting the application of MOFs-immobilized enzymes in many chemical and pharmaceutical industrial processes.
Keywords: Fatty acid; Lipase; Metal-organic frameworks (MOFs); Methyl ester; Zeolitic imidazolate frameworks (ZIF-8) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:208:y:2023:i:c:p:17-25
DOI: 10.1016/j.renene.2023.03.072
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().