Digital twin of an absorption chiller for solar cooling
Diogo Ortiz Machado,
William D. Chicaiza,
Juan M. Escaño,
Antonio J. Gallego,
Gustavo A. de Andrade,
Julio E. Normey-Rico,
Carlos Bordons and
Eduardo F. Camacho
Renewable Energy, 2023, vol. 208, issue C, 36-51
Abstract:
The aim of this study is to create a digital twin of a commercial absorption chiller for control and optimization purposes. The chiller is a complex system that is affected by solar intermittency and non-linearities. The authors use Adaptive Neuro-fuzzy Inference System (ANFIS) to model the chiller’s behavior during transients and part-load events. The chiller is divided into four sub-models, each modeled by ANFIS, and trained and validated using data from 15 days of operation. The ANFIS models are precise, accurate, and fast, with a worst-case Mean Absolute Percentage Error (MAPE) of 3.30% and reduced error dispersion (σE=0.88) and Standard Error (SE=0.01). The models outperformed literature models in terms of MAPE, with MAPEs of 1.12%, 2.21%, and 3.24% for the High Temperature Generator (HTG), absorber + condenser, and evaporator outlet temperatures, respectively. The computational execution time of the model is also a valuable asset, with an average simulation step taking less than 0.20 ms and a total simulation time of 8.9 s for three days of operation. The resulting digital twin is suitable for Model Predictive Control applications and fast what-if analysis and optimization due to its gray-box representation and computational speed.
Keywords: Dynamic modeling; Fuzzy; Principal Component Analysis; Heat Ventilation and Air Conditioning; Fresnel Solar Collector (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003403
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:208:y:2023:i:c:p:36-51
DOI: 10.1016/j.renene.2023.03.048
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().