Climate influence on the optimal stand-alone microgrid system with hybrid storage – A comparative study
Dinan Wang and
Michael Grimmelt
Renewable Energy, 2023, vol. 208, issue C, 657-664
Abstract:
In the efforts to combat global warming, diversified social, political and technical strategies have been proposed and partially carried out. The vision to have a 100% renewable energy-based electricity system has been one of the long-term strategies in Germany. It is well known that renewable energy can only be utilized to the full extent when its down-side characteristics of intermittency and variability can be compensated by a practical storage system. Due to its long-term storage capacity in comparison to the battery storage, in recent years, hydrogen storage system has been undergoing a technological development and deployment boom, especially for the microgrid systems. This research evaluates the techno-economic feasibility of a 100% hybrid renewable energy-based system with different scenarios of energy storage systems for an off-grid microgrid system in two distinct climate regions within Germany, namely Hamburg and Munich. The “HOMER Pro” software was used to analyse the economic and environmental impact amongst the case studies. The aim of this theoretical study is to answer the questions: 1) Under different climate conditions which type of energy storage (i.e. battery, hydrogen tank, and hybrid battery-hydrogen tank) can offer the overall flexibility and economic advantages? 2) For a specific climate condition, how is the hybrid storage system deployed to achieve the optimum cost-effective scenario? 3) How would climate uncertainties affect the future energy plan for different climate zones?
Keywords: Hybrid renewable power; Hybrid community energy storage; Power to hydrogen to power; Stand-alone microgrid; Climate influence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003348
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:208:y:2023:i:c:p:657-664
DOI: 10.1016/j.renene.2023.03.045
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().