EconPapers    
Economics at your fingertips  
 

An adaptive identification method of abnormal data in wind and solar power stations

Han Wang, Ning Zhang, Ershun Du, Jie Yan, Shuang Han, Nan Li, Hongxia Li and Yongqian Liu

Renewable Energy, 2023, vol. 208, issue C, 76-93

Abstract: Accurate and credible operation data sets of wind and solar power stations are the basis of many research works. However, such data sets often contain abnormal data due to failure, maintenance, energy curtailment, etc. The existing identification methods fail to consider the operating characteristics of power stations and the forms of abnormal data, resulting in low identification ability. Therefore, an adaptive identification method of abnormal data (AIMAD) in the wind and solar power stations is proposed in this paper, including the bidirectional one-sided quartile method and double DBSCAN method to deal with unevenly distributed abnormal data; the improved K-means clustering method based on the distance between the cluster center and benchmark power curve to process the abnormal data that are densely accumulated and closely connected with normal data in the power scatter diagram. The proposed method can adjust adaptively according to the forms of abnormal data to realize accurate identification and has strong robustness for power stations. The operation data of 30 wind farms and 8 solar plants in China are taken as examples to verify the effectiveness and superiority of the proposed method.

Keywords: Wind farm; Solar plant; Abnormal data; Adaptive identification; Power reconstruction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123003762
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:208:y:2023:i:c:p:76-93

DOI: 10.1016/j.renene.2023.03.081

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:76-93