A trend-based method for the prediction of offshore wind power ramp
Yaoyao He,
Chuang Zhu and
Xueli An
Renewable Energy, 2023, vol. 209, issue C, 248-261
Abstract:
Wind power ramp is a destructive event accompanied with a sharp change of wind power. Offshore wind power is expected to receive more attention for it can harvest consistent and strong winds. In this paper, a ramp detection framework based on the swinging door algorithm (SDA) and the mergence of correct ramps is proposed. Meanwhile, a trend-based prediction method (T-Method) is proposed to predict offshore wind power ramps. The ramp detection framework is utilized to identify wind power ramp events (WPREs) and label original data according to the detection results. After that, the labeled data is selected as the input of recurrent neural network to produce wind power prediction results. Finally, the prediction results are detected by the ramp detection framework to produce WPREs prediction results. Four recurrent neural network models and two traditional methods are applied to two offshore wind power datasets for corroborating the effectiveness of our method. Comparative experiments show that our proposed method performs excellent in all evaluation indicators. The proposed WPREs prediction method improves the performance of WPREs prediction under the premise of low false alarm rate and missing alarm rate. It provides early warning for power system operators to reduce the harm of WPREs.
Keywords: Offshore wind power ramp events; Swinging door algorithm; Ramp detection; Ramp prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123004342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:209:y:2023:i:c:p:248-261
DOI: 10.1016/j.renene.2023.03.131
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().