EconPapers    
Economics at your fingertips  
 

Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield

Najya Jabeen Poolakkalody, Kaviraj Ramesh, Suchithra Palliprath, Shima Namath Nittoor, Rogelio Santiago, Shama Prasada Kabekkodu and Chithra Manisseri

Renewable Energy, 2023, vol. 209, issue C, 420-430

Abstract: Biofuel potential of a widely grown perennial grass, Pennisetum polystachion, was analyzed using triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment. The optimum pretreatment condition was selected based on the delignification efficiency. 80% [TEA][HSO4] at 140 °C for 45 min at 10% sample load, yielding high delignification rate (65.8%) was selected as the optimum pretreatment condition. Recycling of [TEA][HSO4] showed up to 90% IL recovery and significant delignification rates. Glucan yield in the biomass increased to 67.8%, whereas digestibility of biomass enhanced from 16.7% to 84.1%. Extensive deferuloylation (88%) and decoumarylation (86.4%) were observed in the sample following pretreatment. Diferulic acids were not detected in pretreated samples indicating their complete removal. HMF (0.1 mg/mL) and furfural (0.001 mg/mL) produced during pretreatment were very low compared to conventional methods. FTIR and XRD confirmed pronounced delignification and hemicellulose dissolution, and FESEM showed a marked difference in the surface morphology, including defibrillation and enhanced porosity. An ethanol yield of 275 mg/g biomass (84.7% of theoretical maxima) was achieved using Saccharomyces cerevisiae MTCC 36 after 15 h of fermentation. The results obtained from the current study can shed light on utilizing P. polystachion as a potential biofuel feedstock using a low-cost ionic liquid [TEA][HSO4].

Keywords: Pennisetum polystachion; Perennial grass; Triethylammonium hydrogen sulfate; Hydroxycinnamates; Bioethanol; Delignification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123004494
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:209:y:2023:i:c:p:420-430

DOI: 10.1016/j.renene.2023.04.008

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:420-430