EconPapers    
Economics at your fingertips  
 

Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example

Weilin Li, Mingyi Jing, Rufei Li, Junxi Gao, Jiayin Zhu and Ruixin Li

Renewable Energy, 2023, vol. 209, issue C, 71-84

Abstract: Phase change materials (PCMs) are recognized as a promising passive energy retrofit technology for existing buildings, as they are applied to the internal and external surfaces of the building with less impact on the original structure. However, the effectiveness of PCMs varies from region to region. Taking the Central Plains of China as an example, this paper investigated the effect of phase change temperature and material thickness variation on the energy efficiency of PCM when it was arranged on 14 placements including furniture through EnergyPlus (E+). And further explored the applicability of coupling PCMs with natural ventilation (NV). The results showed that: for the Central Plains of China, PCMs arranged on the internal surface of building roofs were optimal, and the reduction rate of uncomfortable degree hours could reach 38%, 26%, 24% and 40% after integrating PCMs into the roof, floor, external wall and furniture. The uncomfortable degree hour reduction rate per unit mass of PCM was 0.052%/kg for the roof, and the value of furniture was very close to the external wall and floor, which achieved 0.033%/kg. In addition, the coupling of PCM with NV improved the energy efficiency of PCM by more than twice.

Keywords: Phase change furniture; Phase change materials; EnergyPlus; Multi-conditions simulation; Passive energy saving; Natural ventilation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123004093
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:209:y:2023:i:c:p:71-84

DOI: 10.1016/j.renene.2023.03.106

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:71-84