Numerical simulation on Geothermal extraction by radial well assisted hydraulic fracturing
Tiankui Guo,
Tong Hao,
Ming Chen,
Yuelong Zhang,
Zhanqing Qu,
Xuliang Jia,
Wei Zhang and
Haiyang Yu
Renewable Energy, 2023, vol. 210, issue C, 440-450
Abstract:
The mid-deep geothermal energy is extracted from the fracture network created by hydraulic fracturing. Generally, the hydraulic fracture created in the deep thermal reservoir shows the planar shape but not the network shape, and this significantly impacts the geothermal extraction efficiency. In this study, a geothermal extraction technology by radial well assisted hydraulic fracturing, which connects hydraulic fractures to each other, was proposed. An operation technique of radial well-assisted hydraulic fracturing in geothermal reservoirs without well-developed NFs was established. The model considering evolution of fracture permeability was resolved by thermo-hydromechanical (THM) coupling numerical simulation. The results show that the radial wells should be placed vertically within a large range. The thermal production increases by 20%, about 0.25 MW as the radial well length increases from 50 m to 200 m. As many fractures as possible are needed in thermal exploitation, and the fracture number should be at least 7. The simulation demonstrates that the radial well-assisted hydraulic fracturing heat recovery method is feasible in simulation. In this thesis, a more accurate numerical simulation method of geothermal production capacity is proposed, which has engineering guiding significance for the actual development and prediction of geothermal energy.
Keywords: Geothermal extraction; Numerical simulation; Thermo-hydromechanical coupling; Radial well (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123005359
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:210:y:2023:i:c:p:440-450
DOI: 10.1016/j.renene.2023.04.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().