EconPapers    
Economics at your fingertips  
 

Critical sky temperatures for passive radiative cooling

Ross Y.M. Wong, C.Y. Tso, S.Y. Jeong, S.C. Fu and Christopher Y.H. Chao

Renewable Energy, 2023, vol. 211, issue C, 214-226

Abstract: Passive radiative coolers can preserve the surface temperature below ambient by simultaneously reflecting incoming solar radiation and emitting thermal radiation to the sky. Apart from thermo-optical properties of the materials, radiative cooling performance is affected by various environmental factors which determine the atmospheric transmittance. As such, field investigations lack convergence and completion. And energy balance consideration, which aids in interpreting the field investigative results, is a deterministic cogitation on convective and radiative heat transfer by the radiative cooler that ignores the uncertainties abundant in field study. In this work, we examine the cooling performance of radiative cooling materials under different subtropical weather conditions in Hong Kong and approach the problem based on probabilistic regression modelling as an alternative. At nighttime, the response variable of surface temperature reduction can be correlated with a single predictor variable of sky temperature difference, which is a lumped parameter of ambient temperature, relative humidity, and cloud fraction. At daytime, it should be parametrized with an additional variable regarding solar intensity. The regression analysis reveals that, the higher the thermal emissivity, the larger is the temperature reduction at nighttime, especially obvious for large sky temperature difference. And heavy solar heat load is absorbed by the coolers at daytime even they feature reasonably high solar reflectivity. In this regard, further increment in solar reflectivity poses the top priority in improving daytime radiative cooling performance.

Keywords: Radiative cooling; Radiative heat transfer; Sky temperature; Beer-lambert law; Micro-fabrication (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:211:y:2023:i:c:p:214-226

DOI: 10.1016/j.renene.2023.04.142

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:214-226