Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability
Nanzhe Wang,
Haibin Chang,
Xiang-Zhao Kong and
Dongxiao Zhang
Renewable Energy, 2023, vol. 211, issue C, 379-394
Abstract:
To maximize the economic benefits of geothermal energy production, it is essential to optimize geothermal reservoir management strategies, in which geologic uncertainty should be considered. In this work, we propose a closed-loop optimization framework, based on deep learning surrogates, for the well control optimization of geothermal reservoirs. In this framework, we construct a hybrid convolution–recurrent neural network surrogate, which combines the convolution neural network (CNN) and long short-term memory (LSTM) recurrent network. The convolution structure can extract spatial information of reservoir property fields and the recurrent structure can approximate sequence-to-sequence mapping. The trained model can predict time-varying production responses (rate, temperature, etc.) for cases with different permeability fields and well control sequences. In this closed-loop optimization framework, production optimization, based on the differential evolution (DE) algorithm, and data assimilation, based on the iterative ensemble smoother (IES), are performed alternately to achieve a real-time well control optimization and to estimate reservoir properties (e.g. permeability) as the production proceeds. In addition, the averaged objective function over the ensemble of geologic parameter estimates is adopted to consider geologic uncertainty in the optimization process. Geothermal reservoir production cases are examined to evaluate the performance of the proposed closed-loop optimization framework. Our results show that the proposed framework can achieve efficient and effective real-time optimization and data assimilation in the geothermal reservoir production process.
Keywords: Geothermal energy; Deep learning; Surrogate; Closed-loop optimization; Data assimilation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123005372
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:211:y:2023:i:c:p:379-394
DOI: 10.1016/j.renene.2023.04.088
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().