Biodiesel production from waste cooking oil using heterogeneous KNO3/Oil shale ash catalyst
Zayed Al-Hamamre,
Arwa Sandouqa,
Basel Al-Saida,
Reyad A. Shawabkeh and
Mohammad Alnaief
Renewable Energy, 2023, vol. 211, issue C, 470-483
Abstract:
A solid heterogeneous catalyst was derived from oil shale ash by impregnation of the ash with KNO3 followed by calcination for 4 h. Different preparation conditions were studied (KNO3 concentrations: 0.05 and 0.1 M, and calcination temperatures: 500 and 700 °C). After calcination, the dependence of waste cooking oil to biodiesel conversion on the reaction variables such as the catalyst loading, the methanol to oil molar ratio, and reaction time was investigated. The catalyst characterization was conducted using FT-IR, XRD, BET, TEM, and SEM. Further, the typical unsaturated fatty acids present in common vegetable oils, the oil-to-biodiesel conversion, and the chemical composition of the produced biodiesel were quantified by (1H NMR). Among the various catalysts prepared, the ash impregnated with 0.1 M KNO3/and calcined at 700 °C (Ash 0.1/700 catalyst) provided the maximum oil to biodiesel conversion of about 100% at 65 °C reaction temperature, methanol to oil molar ratio of 45:1, and 2 h reaction time.
Keywords: Biodiesel; Oil shale ash; Potassium nitrate; Heterogeneous catalyst; Transesterification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:211:y:2023:i:c:p:470-483
DOI: 10.1016/j.renene.2023.05.025
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().