A novel oxy-enrich near-field thermophotovoltaic system for sustainable fuel: Design guidelines and thermodynamic parametric analysis
Shiquan Shan,
Huadong Huang,
Binghong Chen,
Jialu Tian,
Yanwei Zhang and
Zhijun Zhou
Renewable Energy, 2023, vol. 211, issue C, 494-507
Abstract:
Developing new technologies is a key to achieve renewable energy utilization. The near-field thermo-photovoltaics (NFTPV), an emerging power generation device, is investigated from the energy perspective in this paper. A novel oxy-enrich NFTPV system is proposed, and a thermo-physical model is established for sustainable fuel gas based on energy balance. The effects of parameters on system performance are numerically explored, including the furnace size, oxygen ratio, voltage and vacuum gap, etc. Moreover, special attention is paid to the effects of oxygen ratio on system performance under 2 atm of O2/N2 and O2/CO2. Besides, exergy analysis is conducted. The results show that it is more appropriate to control the power density of furnace at 50 kW/m2 in system design. The efficiency of NFTPV system is about twice greater than that of far-field TPV system. The power density of NFTPV system increases by more than 2.5 times when the oxygen ratio increases; the TPV volume can increase by 2–3 times and the efficiency is also improved. The results indicate that oxy-enrich combustion with higher oxygen ratio matches a larger NFTPV system, which reduces the manufacturing difficulty and is significant in engineering. This study provides new ideas and references for NFTPV practical application.
Keywords: Oxy-enrich combustion; Near-field radiation; Thermophotovoltaic; Parametric analysis; Radiative exergy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:211:y:2023:i:c:p:494-507
DOI: 10.1016/j.renene.2023.04.147
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().