Experimental analysis of solar panel efficiency improvement with composite phase change materials
Dhanusiya Govindasamy and
Ashwani Kumar
Renewable Energy, 2023, vol. 212, issue C, 175-184
Abstract:
The solar photovoltaic panel's efficiency is significantly diminished by an increase in operating temperature. Addressing this problem in a variety of composite phase change materials integrated with solar panels would require more efficient thermal management of the panel. Four different modules viz. The reference panel as module1, solar panel with paraffin jelly & expanded Graphite as module 2, solar panel with paraffin jelly & expanded perlite as module 3, solar panel with paraffin jelly & expanded vermiculite as module 4, were considered for investigations. Comparisons and discussions are presented based on a number of factors, including electrical efficiency, output power, and surface temperature of the solar panel with and without cooling. Outdoor testing of the proposed methods as compared with the reference panel. The results shows that the module 3 was able to offer the maximum surface temperature reduction from 59.04 °C to 48.75 °C, increase the electrical efficiency from 11.97% to 14.89% during noon time and increase the power output from 28.95 W to 36.99 W. Thus, a combination of paraffin jelly with expanded perlite phase change material panel reduces the maximum panel surface temperature and improves the power output and efficiency compared to other panels.
Keywords: Phase change material; Composite material; Thermal storage; Photovoltaic panel; Efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:212:y:2023:i:c:p:175-184
DOI: 10.1016/j.renene.2023.05.028
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().