EconPapers    
Economics at your fingertips  
 

Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method

Chaozhong Xu, Xu Liu, Chenrong Ding, Xin Zhou, Yong Xu and Xiaoli Gu

Renewable Energy, 2023, vol. 212, issue C, 430-442

Abstract: Power consumption and oxygen transfer are considered the two most important direct indexes, affecting the effective and cost-efficient C5 sugar acid fermentation from C5 sugar. In this work, an effective optimization approach combining computational fluid dynamics (CFD) modeling and the Taguchi method, was presented to evaluate C5 sugar acid fermentation in a gas-liquid stirred tank bioreactor. Three most critical control factors of impeller type (Rushton turbine (RT), concaved blade disc turbine (CBDT), and four wide-blade hydrofoil impeller pumping down (WHd)), agitation speed and aeration rate involved three levels, were quantitatively studied by numerical simulation based on a validated CFD model. Results indicated that, the WHd impeller gave the best energy-saving performance, the CBDT impeller gave the best oxygen transfer performance, while the RT impeller was the most balanced one. The agitation speed contributed most to both the power consumption and oxygen transfer, while exerting minor impact on compromise indexes. The aeration rate had little contribution to power consumption and oxygen transfer, while deserving more attention when energy efficiency and trade-off optimization are considered. These findings can be used as guidelines to achieve efficient and economical C5 sugar acid production.

Keywords: C5 sugar acid; Power consumption; Oxygen transfer; Computational fluid dynamics; Taguchi method (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006808
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:212:y:2023:i:c:p:430-442

DOI: 10.1016/j.renene.2023.05.057

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:430-442