Implications of spring-like air compressibility effects in floating coaxial-duct OWCs: Experimental and numerical investigation
J.C.C. Portillo,
L.M.C. Gato,
J.C.C. Henriques and
A.F.O. Falcão
Renewable Energy, 2023, vol. 212, issue C, 478-491
Abstract:
The paper analyses the spring-like air compressibility effect in coaxial-duct oscillating-water-column (CD-OWC) wave energy converters (WECs). This is accomplished through a novel non-linear time-domain model for OWC WECs implemented in the object-oriented language Modelica. Good agreement was observed between numerical and physical model testing results. The air chamber volume significantly affected the spring-like air compressibility effect and the converter performance. Another significant factor is the damping level of the power take-off system. Both fixed and floating CD-OWC versions were numerically investigated, focusing on the compressibility effect. Differences were found mainly due to the additional degrees of freedom in floating configurations. In general, numerical and experimental results showed that air compressibility might positively or negatively affect device power performance in regular waves, depending on whether the frequency is within or out of an interval defined by critical frequencies. Some particular points were observed and categorised as Equicompressum Nullum and Equicompressum critical points, representing different characteristics. Knowledge of these critical values might be important in OWC control. Finally, some applications of the CD-OWC concept are discussed, including considerations on the power output level provided by biradial and Wells air turbines.
Keywords: Wave energy; Floating oscillating water column; Coaxial-duct; Compressibility effects; Equicompressum critical points; Modelica (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123006092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:212:y:2023:i:c:p:478-491
DOI: 10.1016/j.renene.2023.04.143
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().