EconPapers    
Economics at your fingertips  
 

Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty

Leyi Yao, Zeyuan Liu, Weiguang Chang and Qiang Yang

Renewable Energy, 2023, vol. 212, issue C, 523-537

Abstract: Integrated energy systems (IES) with renewable energy systems (RES), carbon capture systems (CCS) and energy storage systems (ESS) are considered efficient in supporting the low-carbon energy supply with both economic and environmental benefits. Effective energy management is required to ensure the economical, environmental and reliable operation of the IES. However, the optimal IES operation is considered a non-trivial task due to the renewable generation uncertainty and the optimization of multiple contradictory objectives (e.g. economic, environmental and risk costs). This paper aims to provide a multi-level optimization model for the real-time optimal IES operation consisting of RES, ESS and CCS. This work quantifies the uncertainty by the Conditional Value at Risk (CVaR) theory in the optimization model. The uncertainty is further reduced by improving the operation strategy through a model predictive control (MPC)-based method. Also, the multi-objective optimization model is adopted to minimize the economic cost, carbon dioxide emissions (CDE) and primary energy consumption (PEC) for optimal energy scheduling in the intra-day stage. Based on the result of the intra-day stage, the feedback correction model is applied to adjust the schedule to balance the difference between the forecasting and actual values. Numerical results show that the proposed solution can provide the trade-off between economical and environmental performance. Through ablation experiments, the proposed method with feedback correction can carry out demand response with lower costs, CDE and PEC. The proposed solution is further confirmed with outperformed performance compared with single-objective optimization methods and other stochastic optimization methods. In addition, a robustness analysis is conducted to quantify the benefits of RES, ESS and CCS in IES.

Keywords: Integrated energy system; Optimal energy management; Model predictive control; Multi-objective optimization; Real-time optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123007115
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:212:y:2023:i:c:p:523-537

DOI: 10.1016/j.renene.2023.05.082

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:523-537