EconPapers    
Economics at your fingertips  
 

Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)

Haleh Delnava, Ali Khosravi and Mamdouh El Haj Assad

Renewable Energy, 2023, vol. 213, issue C, 195-204

Abstract: Solar energy is one of the most promising energy sources as it its significantly reduce greenhouse gas (GHG) emissions compared to fossil fuels. In this study, we employ the meta frontier framework to estimate US solar energy performance in 2019 using stochastic non-parametric envelopment of data (StoNED) under the convex and non-convex frameworks. This estimation allows us to monitor operating inefficiencies and technological gaps in each observation. In addition, we investigate the potential impact of the specification of a convex production technology in relation to the use of a nonconvex technology in the comparative analysis. This methodological reflection is mainly supported by the recent engineering literature that provides evidence of the non-convex hypothesis. The results indicate that a multifaceted approach must be taken to ensure the supply of energy. Given that sunny states have the potential to transmit energy to other states, the drawbacks, such as environmental concerns and high investment expenses, drive policymakers to look for other alternatives, such as adapting panels that are suitable for specific conditions.

Keywords: Efficiency; Meta-technology; US Solar power; Stochastic nonparametric envelopment of data; Convex and nonconvex frameworks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123007772
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:213:y:2023:i:c:p:195-204

DOI: 10.1016/j.renene.2023.06.007

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:213:y:2023:i:c:p:195-204