Heat harvesting characteristics of building façades integrated photovoltaic /thermal-heat pump system in winter
Chunxiao Zhang,
Lei Chen,
Ziqi Zhou,
Zhanwei Wang,
Lin Wang and
Wenzhe Wei
Renewable Energy, 2023, vol. 215, issue C
Abstract:
The water temperature of building-integrated photovoltaic/thermal systems is an important indicator of building space heating. However, in the winter, this system's heat loss is significant, and the low-temperature water cannot meet building heating standards. Meanwhile, previous research on building envelopes integrated PV/T - heat pump systems have primarily focused on the performance of systems installed on limited roofs of buildings, which conflicts with the requirement for energy consumption in metropolitan high-rise buildings. This study proposes a photovoltaic/thermal-heat pump system (BIPV/T-HP) mounted on the building façade to solve this problem, and a numerical model is developed to assess the heating performance. The results showed that increasing the flow velocity from 0.05 m/s to 0.5 m/s reduces the mean outlet water temperature from 16.11 °C to 9.55 °C, but increases the operating times of the heat pump from 6 to 8 in January, and increases the heating capacity of the BIPV/T - HP system from 58.6 kWh to 90.5 kWh over the entire heating season. Meanwhile, higher temperature thresholds raise mean water temperature and increase heat loss, resulting in a reduction in heat pump output from 111.3 kWh to 50.2 kWh.
Keywords: Photovoltaic /thermal system; Heat pump; Building façades; Heating capacity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123008091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008091
DOI: 10.1016/j.renene.2023.118909
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().