EconPapers    
Economics at your fingertips  
 

Analysis and prediction of the penetration of renewable energy in power systems using artificial neural network

Yixiao Han, Yanfen Liao, Xiaoqian Ma, Xing Guo, Changxin Li and Xinyu Liu

Renewable Energy, 2023, vol. 215, issue C

Abstract: The curtailment of renewable energy worsens with increasing penetration in power systems, so it is necessary to explore the upper limit value of the penetration of renewable energy (PRE). This paper uses artificial neural networks (ANN) to study the historical data of California independent system operator (CAISO), analyze the fluctuation balance strategy of wind and solar power, and predict the upper limit value of the PRE, which will peak at 40.5% in 2025. In addition, this paper also simulates the inclusion of energy storage unit (ESU) with an installed capacity of 3 GWh in the grid to reduce curtailments, and analyzes the grid operating conditions and the upper limit value of the PRE, showing that the storage units with an installed capacity of only 3% of the average daily power output of solar energy recover 58% of the annual curtailments (2021), and the maximum PRE is 41.2%.

Keywords: Artificial neural network; Wind and solar penetration; Prediction; Energy storage; Renewable energy curtailments (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123008145
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008145

DOI: 10.1016/j.renene.2023.118914

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008145