Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models
Yousaf Ayub,
Yusha Hu and
Jingzheng Ren
Renewable Energy, 2023, vol. 215, issue C
Abstract:
Quality syngas production with higher moles of hydrogen and methane are the primary objective of gasification process which is dependent upon the process parameters and composition of biomass. However, it is always a costly and time-consuming task to get the optimum biomass composition and process parameters for quality syngas production. In this research, artificial intelligence (AI) algorithms have been applied for high quality syngas prediction with better moles fractions of hydrogen and methane using hydrothermal gasification (HTG). Comparative analysis of Convolutional Neural Network (CNN), Artificial Neural Network (ANN), Gradient Boost Regressor (GBR), Extreme Boost Regressor (XGB), and Random Forest Regressor (RFR) based algorithms have been done to select an optimal one. Ultimate analysis of biomass and process input parameters inlcuding temperature, pressure, percentage solid content of biomass, and resident time have been used as an input parameter for prediction models. Final comparative results of these AI models conclude that XGB has a better prediction result as compared to other with coefficient of determinant (R2) and mean square errors ranges from 0.85 to 0.95 and 0.008–0.01, respectively. Furthermore, process temperature and the resident time are the most contributing factors in mole fractions of hydrogen and methane. Higher hydrogen and oxygen contents in the biomass, significantly contributes to the production of quality syngas.
Keywords: Biomass energy; Artificial intelligence; Gasification; Machine learning; Extreme Gradient (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123008595
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008595
DOI: 10.1016/j.renene.2023.118953
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().