Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction
Dazhi Yang,
Guoming Yang and
Bai Liu
Renewable Energy, 2023, vol. 215, issue C
Abstract:
This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered.
Keywords: Solar forecasting; Ensemble numerical weather prediction; Calibration; Combining quantiles; European Centre for Medium-Range Weather Forecasts (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123008996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008996
DOI: 10.1016/j.renene.2023.118993
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().