Modeling of heat conduction processes in porous absorber of open type of solar tower stations
Andrii Cheilytko,
Peter Schwarzbözl and
Kai Wieghardt
Renewable Energy, 2023, vol. 215, issue C
Abstract:
An analysis of existing methods for calculating heat and mass transfer processes in porous absorbers of receivers of tower solar power plants is carried out. It is shown that the resulting thermophysical properties of the material are influenced not only by the porosity but also by the location of the pores in the material volume. The criterion of the dislocation vector is proposed as a mathematical indicator of various porous structures. The shortcomings of the existing dependences of the effective thermal conductivity of a material on the type of porosity are shown. The most reliable dependences for determining the thermophysical parameters of a porous medium are also determined and independent factors are proposed on which the mathematical model of heat and mass transfer in open-type solar receivers should be based.
Keywords: Porous media; Open volumetric receiver; Heat conduction transfer; Effective thermal conductivity coefficient; Solar tower stations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123009011
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123009011
DOI: 10.1016/j.renene.2023.118995
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().