Probabilistic wind power forecasting for newly-built wind farms based on multi-task Gaussian process method
Qishu Liao,
Di Cao,
Zhe Chen,
Frede Blaabjerg and
Weihao Hu
Renewable Energy, 2023, vol. 217, issue C
Abstract:
The accurate training of a wind power forecasting (WPF) model for a newly built wind farm is difficult because of limited historical data. This study established a multitask learning architecture wherein the WPF in different wind farms represents an independent task. Subsequently, a novel short-term WPF model based on a multitask learning architecture was proposed. In this model, a multitask Gaussian process is used to capture the intertask conjunction, which contributed to the training of each task. The proposed methodological framework employs dependencies from other tasks wherein older wind farms contain substantial historical data to enhance the performance of tasks in which there is a newly built wind farm. Several numerical experiments were conducted using datasets from seven independent wind farms in Australia. The results show that the proposed scheme not only obtains improved point forecasting results but also produces better probabilistic forecasting results, thus demonstrating the superiority of the proposed method.
Keywords: wind power forecasting; Gaussian process; Point forecasting; Probabilistic forecasting; Multi-task learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123009680
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123009680
DOI: 10.1016/j.renene.2023.119054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().