Vertical limit reduction of chimney in solar power plant
Ajeet Pratap Singh,
Jaydeep Singh,
Amit Kumar and
O.P. Singh
Renewable Energy, 2023, vol. 217, issue C
Abstract:
The practical feasibility to install solar updraft tower (SUT) for power production require huge capital investment and difficulties in installing tall giant chimney structure. The chimney is the most expensive element of SUT and typically covers one-fourth of the total SUT cost. Previous finding has shown that a divergent chimney shows significant increase in power output than a conventional design for the same height. This paper deals with the unexplored scientific question: for how much height of divergent chimney can be dispensed with for the same or higher performance of a conventional design? Using an experimentally validated numerical model, we systematically investigated height reduction of chimney (and hence substantial cost) of a high performing divergent chimney whose power output is identical with a long unstable costly conventional cylindrical chimney. The conventional cylindrical design was chosen as the conventional SUT prototype installed at Manzanares, Spain in the year 1980. Results show that it is possible to reduce the vertical limit by about 80% of the height of conventional cylindrical chimney. Further, the cost analysis estimated for each SUT designs and the optimum divergent chimney SUT holds payback period 40% less than the conventional SUT. The proposed designs would be useful for floating chimney as well made of fabric material with light density air filled to keep short chimney height upright vertically to resolve the instability issues with the conventional tall chimney structure during high wind speed environmental conditions The present investigation would assist scientific community to develop more advance clean energy-based power generation systems to achieve net-zero carbon emissions targets.
Keywords: Solar updraft tower (SUT) or solar chimney power plant (SCPP); Diffuser chimney; Computational fluid dynamics (CFD); Chimney height; Payback period (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123010327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010327
DOI: 10.1016/j.renene.2023.119118
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().