Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application
Xinpeng Yang,
Dong Li,
Ruitong Yang,
Yuxin Ma,
Yanjiao Duan,
Chengjun Zhang,
Wanyu Hu and
Müslüm Arıcı
Renewable Energy, 2023, vol. 217, issue C
Abstract:
Filling phase change material (PCM) in the glazed system is crucial to achieving thermal inertia enhancement and solar radiation regulation. However, most previous investigations focused on the energy performance of the PCM glazed system (PCMGS) in typical periods, and the optimization of PCMGS was mainly conducted by control variables to obtain the optimal value of a single parameter, which cannot accurately guide for the long-term application of PCMGS. In this paper, a global optimization program coupled with a numerical model of PCMGS and differential evolution algorithm (DEA) was developed. The annual energy performance of PCMGS was simulated as the objective function to obtain the optimal values of 11 parameters. Subsequently, the climatic applicability of PCMGS was demonstrated by comparing the annual energy performance with that of the traditional double-glazed system (TDGS). The results indicate that the objective function value converges to optimal after 2000 iterations. PCMGS performs preeminent adaptability in hot regions, followed by intermediate regions. The energy consumption of the building when PCMGS is used is reduced by 13.80% and 1.58% respectively compared to the TDGS. However, in cold regions, PCMGS reveals deplorable adaptability, as the energy consumption increased by 36.58% compared to the TDGS.
Keywords: PCM; Glazed system; Adaptability analysis; Optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123010765
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010765
DOI: 10.1016/j.renene.2023.119161
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().