Experiences from seasonal Arctic solar photovoltaics (PV) generation- An empirical data analysis from a research infrastructure in Northern Finland
Vinay Shekar,
Antonio Caló and
Eva Pongrácz
Renewable Energy, 2023, vol. 217, issue C
Abstract:
The European Union's highly anticipated “solar strategy” to equip the new and existing building stocks with solar PV panels displays a promising trend in the solar PV industry. However, from Finland's perspective, generating solar PV energy in an Arctic setting is characterised by a few common ambiguities, further lowering the motivation. There are several methodologies for identifying and bridging the gaps to provide accurate conclusions. This article employs the observational and empirical approach in presenting the solar PV energy generation data from the research infrastructure in Oulu, a North Finland city. Empirical evidence from a solar PV system from an Arctic background with a macro to micro-level analysis and documentation is expected to bridge the gap between uncertainties and reality and improve the understanding of the region's seasonal, monthly and annual solar PV generation. Spring was the best period for generating solar PV energy, and autumn was the least favourable for generating solar PV energy in the Arctic. Rooftop inclined solar PV have a better potential during spring and summer, and vertical PV quantitatively generate more energy in autumn and winter. Lower tilt angles proved optimal, as these angles eminently capture the spring and summer irradiation.
Keywords: Renewable energy generation; Cold-weather photovoltaics generation; Arctic solar photovoltaics performance; Rooftop panel performance; Vertical panel performance (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123010777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010777
DOI: 10.1016/j.renene.2023.119162
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().