Green and efficient fractionation of bamboo biomass via synergistic hydrothermal-alkaline deep eutectic solvents pretreatment: Valorization of carbohydrates
Shao-Chao Sun,
Ying Xu,
Cheng-Ye Ma,
Chen Zhang,
Cheng Zuo,
Dan Sun,
Jia-Long Wen and
Tong-Qi Yuan
Renewable Energy, 2023, vol. 217, issue C
Abstract:
The development of green and efficient pretreatment strategies for renewable biomass valorization is required and remains challenging. In this study, a green, efficient, and profitable pretreatment strategy using hydrothermal combined with alkaline deep eutectic solvents (HT-ADESs) was developed for the fractionation and valorization of bamboo biomass. The results demonstrated that HT pretreatment not only selectively valorized hemicellulose into functional xylooligosaccharides (XOS), accounting for 65.9% of hydrolyzed xylan, but also facilitated the subsequent delignification with ADESs. Furthermore, 29% of hemicellulose was recovered from the prehydrolyzate, revealing a branched structure of O-acetyl-4-O-methyl-glucurono-β-(1 → 4)-ᴅ-xylan. Following delignification with choline chloride/monoethanolamine containing 25 wt% peroxide, up to 98.4% glucose yield and 99.2% xylose yield were realized by enzymatic hydrolysis of pretreated residue, which were significantly higher than those of unpretreated bamboo (14.6% and 8.1%, respectively). The incorporation of an appropriate amount of water or peroxide into pure ADES facilitated lignin fractionation and reduced biorefinery costs. Overall, this work presented a promising pathway that could valorize 1 kg of dry bamboo into 490 g of fermentable sugars and 78 g of XOS, accompanied by 54 g of hemicellulose and 200 g of lignin fractions.
Keywords: Alkaline deep eutectic solvent; Biomass fractionation; Enzymatic saccharification; Fermentable sugar; Xylooligosaccharide (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812301090X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s096014812301090x
DOI: 10.1016/j.renene.2023.119175
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().