Investigation of weather conditions on the output power of various photovoltaic systems
Reem Shadid,
Yara Khawaja,
Abdullah Bani-Abdullah,
Maryam Akho-Zahieh and
Adib Allahham
Renewable Energy, 2023, vol. 217, issue C
Abstract:
The quantity of solar radiation received by photovoltaic panel surfaces and their efficiency are influenced by environmental factors, including dust buildup and weather changes. This study presents an experimental analysis to determine how dust and rain affected the output of photovoltaic power for five different types and orientations of solar module systems of 5 kW each. All systems are installed at Applied Science Private University in Jordan, and attached to sunny portal system to monitor the PV output power for each type in real time. After one–four weeks of exposure, the effects of dust buildup and weather conditions on the power output of the module systems were examined. The results showed that four weeks of dust buildup resulted in 16.7%, 28%, 16.6%, 26.7%, and 21% reduction in PV power production for Monocrystalline (c-Si)/South, Monocrystalline (c-Si) East/West, Polycrystalline (p-Si)/South, Polycrystalline (p-Si)/East/West, and Thin-film (a-Si, microcrystalline)/South system respectively. In addition, a 20% average decrease and fluctuation in PV output power under wet conditions is observed. Moreover, the results showed that the power sold to the grid would be lower than predicted by 21% after one month of dust accumulation, which should be included in energy management planning.
Keywords: Photovoltaic modules; Dust accumulation; Photovoltaic efficiency; Output power (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123011175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011175
DOI: 10.1016/j.renene.2023.119202
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().