EconPapers    
Economics at your fingertips  
 

Study on thermal storage effectiveness of a novel PCM concrete applied in buildings located at four cities

Xinghai Liu, Yingying Yang, Zhonghua Sheng, Weidong Wu, Yuan Wang and Jean Dumoulin

Renewable Energy, 2023, vol. 218, issue C

Abstract: The implementation of phase change thermal storage technology represents a high-potential strategy for mitigating energy consumption and reducing heating and cooling loads in buildings. However, the practical thermal storage effectiveness is affected significantly by the outdoor thermal conditions specific to each location. This work studied the thermal behaviors of a novel composite concrete containing phase change material (PCM concrete) when inserted into building envelopes. Numerical simulations have been conducted to assess the full-year impact of this PCM concrete on buildings with multi-layer walls, considering four cities with different climates. Results indicate that this novel PCM concrete demonstrates maximum effectiveness in Paris, effectively reducing indoor temperature fluctuations in summer. Conversely, in the other three cities with high solar-air temperatures in summer, the PCM concrete remains melting, reducing its thermal storage effectiveness. Instead, it performs better thermal behaviors during spring and autumn. In summary, the new PCM concrete demonstrates a good capacity to regulate indoor temperature, however, this effectiveness is primarily impacted by the outdoor solar-air temperature. Therefore, to maximize the latent heat storage potential of PCM, it is crucial to select an appropriate PCM with optimal phase change temperature zones, particularly when this technology is implemented in diverse climatic zones.

Keywords: Thermal storage; Phase change material; Concrete; Thermal performance; Building energy conservation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123011771
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011771

DOI: 10.1016/j.renene.2023.119262

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011771