Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models
Sokratis J. Anagnostopoulos,
Jens Bauer,
Mariana C.A. Clare and
Matthew D. Piggott
Renewable Energy, 2023, vol. 218, issue C
Abstract:
Wind farm modelling is an area of rapidly increasing interest with numerous analytical and computational-based approaches developed to extend the margins of wind farm efficiency and maximise power production. In this work, we present the novel ML framework WakeNet, which reproduces generalised 2D turbine wake velocity fields at hub-height, with a mean accuracy of 99.8% compared to the solution calculated by the state-of-the-art wind farm modelling software FLORIS. As the generation of sufficient high-fidelity data for network training purposes can be cost-prohibitive, the utility of multi-fidelity transfer learning has also been investigated. Specifically, a network pre-trained on the low-fidelity Gaussian wake model is fine-tuned in order to obtain accurate wake results for the mid-fidelity Curl wake model. The overall performance of WakeNet is validated on various wake steering control and layout optimisation scenarios, obtaining at least 90% of the power gained by the FLORIS optimiser. Moreover, the Curl-based WakeNet provides similar power gains to FLORIS, two orders of magnitude faster. These promising results show that generalised wake modelling with ML tools can be accurate enough to contribute towards robust real-time active yaw and layout optimisation under uncertainty, while producing realistic optimised configurations at a fraction of the computational cost.
Keywords: Wake modelling; Deep learning; Transfer learning; Multi-fidelity; Wind farm optimisation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123012089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089
DOI: 10.1016/j.renene.2023.119293
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().