EconPapers    
Economics at your fingertips  
 

Coordinated active and reactive power dynamic dispatch strategy for wind farms to minimize levelized production cost considering system uncertainty: A soft actor-critic approach

Guozhou Zhang, Weihao Hu, Di Cao, Dao Zhou, Qi Huang, Zhe Chen and Frede Blaabjerg

Renewable Energy, 2023, vol. 218, issue C

Abstract: With the rapid increasing of wind power generation in the power system, the coordinated dispatch of active and reactive power for each wind turbine (WT) in the wind farm (WF) becomes the critical issue for the safe and stable of power grid. Considering the time-varying characteristic of the WF, this can be regarded as a decision-making problem under uncertainty. To this end, this study formulates the active and reactive power dispatch problem of WF as a Markov decision process (MDP) allowing for the system uncertainty, e. g. wind speed, reactive power demand and wake effect. Then, an agent is trained via deep reinforcement learning algorithm (DRL) to solve the MDP to obtain the optimal dispatch policy with the minimizing levelized production cost (LPC) target. Finally, the proposed method is tested on an 80 MW WF and some benchmark methods are utilized to act as comparison examples. Simulation results show that, compared with other methods, the proposed dispatch strategy can provide more appropriate active and reactive reference for each wind turbine to extend lifetime of WF, resulting in less LPC.

Keywords: Wind power; Active and reactive power dispatch strategy; Markov decision process; Deep reinforcement learning; Levelized production cost (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123012508
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012508

DOI: 10.1016/j.renene.2023.119335

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012508