EconPapers    
Economics at your fingertips  
 

Experimental study of a floating two-body wave energy converter

Demin Li, Sanjay Sharma, Alistair G.L. Borthwick, Heao Huang, Xiaochen Dong, Yanni Li and Hongda Shi

Renewable Energy, 2023, vol. 218, issue C

Abstract: A novel floating two-body wave energy converter (WEC) is tested in regular waves. The WEC consists of a streamlined conical outer buoy that surrounds an elongated inner buoy, with a hydraulic power take-off (PTO) system and an optimized mooring system. Free decay tests quantify the natural frequency characteristics of two-buoy system. A parameter study characterizes the multi-degree-of-freedom coupled motion response of the system dynamics in regular waves. It is found that the two-body system with two resonant frequencies broadens the motion frequency band and possesses stability and survivability attributes that enhance energy capture performance. By quantifying the peak energy, the influence of key parameters on energy absorption is revealed, and the two-body system optimized through systematic parameter selection. Nonlinear effects of fluid viscosity and mooring chain stiffness on energy absorption are analyzed by considering change in wave height. Estimates are made of the optimal energy acquisition interval of the device and its optimal sea area for delivery. By determining the optimal mass ratio for maximum WEC power absorption insight is also provided into the likely optimal energy capture in the deep sea off the coast of China. This paper offers information on floating two-body WEC systems, including guidance on optimization of PTO control strategy, that should be useful to WEC device analysts and developers worldwide.

Keywords: Floating two-body wave energy converter; Physical model test; Hydrodynamic characteristics; Energy capture (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123012661
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012661

DOI: 10.1016/j.renene.2023.119351

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012661