The performance analysis of a photo/thermal catalytic Trombe wall with energy generation
Xiaojian Duan,
Chao Shen,
Dingming Liu and
Yupeng Wu
Renewable Energy, 2023, vol. 218, issue C
Abstract:
The Trombe wall (T-wall) has gained significant attention as an advanced building envelope capable effectively harvest solar energy. Improving the functionality and performance of the T-wall is critical for achieving energy-saving and positive energy buildings. This study focuses on enhancing the functionality and performance of the T-wall by incorporating with photovoltaic (PV) panels and aluminum panels in the T-wall chamber. Additionally, the PV panels and aluminum panels are laminated with photocatalyst and thermal materials to optimize their energy harvesting capabilities. In this photo/thermal catalytic Trombe wall system, the air within the wall system moves upwards due to thermal pressure and sweeps over the surface of the catalytic material when exposed to solar irradiation. Through the combined effects of solar energy and catalytic oxidation, the cold and dirty air in the chamber undergoes heating and purification processes, resulting in the desired heating effect while significantly improving the overall air quality within the environment. The experimental results highlight that the novel T-wall system offers a multifunctional solution that addresses electricity generation, heating, and improvement of indoor air quality. The main findings of this study are as follows: (1) During the period from 9:00 to16:00, the T-wall system demonstrates the ability to provide a range of 6.25 kJ/mol to 17.74 kJ/mol of heat and 0.075 kWh to 0.372 kWh of electricity per day. (2) In terms of indoor air quality improvement, the T-wall system exhibits a one-way sterilization efficiency of bacterial aerosols ranging from 0.204 to 0.347. (3) The comprehensive performance of the system was found to be optimal when the system spacing is 25 cm. (4) In terms of the layout of UV light, it was observed that at the top and bottom of the system yielded better sterilization efficiency.
Keywords: T-wall; Sterilization; The severe cold region; Catalytic oxidation; Energy production (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123012764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012764
DOI: 10.1016/j.renene.2023.119361
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().