EconPapers    
Economics at your fingertips  
 

Enhancing solar photovoltaic modules quality assurance through convolutional neural network-aided automated defect detection

Sharmarke Hassan and Mahmoud Dhimish

Renewable Energy, 2023, vol. 219, issue P1

Abstract: Detecting cracks in solar photovoltaic (PV) modules plays an important role in ensuring their performance and reliability. The development of convolutional neural networks (CNNs) has introduced a game-changing dimension in the detection of defects in PV modules. This paper proposes an automated defect detection method for PV, by leveraging custom-designed CNN to accurately analyse electroluminescence (EL) images, identifying defects such as cracks, mini-cracks, potential induced degradation (PID), and shaded areas. The proposed system achieves a high level of validation accuracy of 98.07%, reducing manual inspection demands, enhancing quality standards, and saving costs. The system was validated in a case study for PV installations faulty with PID, where it identified all defective modules with a high degree of precision of 96.6%, surpassing existing methods. This methodology holds promise for revolutionizing PV industry quality control, improving module reliability, and supporting sustainable solar energy growth.

Keywords: Convolutional neural network; Artificial energy; Photovoltaics; Automated defect detection; Electroluminescence imaging (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123013046
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013046

DOI: 10.1016/j.renene.2023.119389

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013046